If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-9604=0
a = 2; b = 8; c = -9604;
Δ = b2-4ac
Δ = 82-4·2·(-9604)
Δ = 76896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76896}=\sqrt{144*534}=\sqrt{144}*\sqrt{534}=12\sqrt{534}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12\sqrt{534}}{2*2}=\frac{-8-12\sqrt{534}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12\sqrt{534}}{2*2}=\frac{-8+12\sqrt{534}}{4} $
| 59.95=1200((.5(x))+29.95 | | 73=-7k | | P=–0.5q+40 | | 30=600(x) | | 5x+12+10x-37+9x+1=360 | | C(40)=13.00+0.05x | | 3/x-4=2/7x | | -3x2-12=180 | | (2x+3)+x-6=180 | | x^{2}+x-72=0 | | -11=(a-5)/(6) | | 2x^2+3x^2=208 | | 6-2x=2x+54 | | 9x-19+111+5x+8+128+7x+3+90=900 | | -8-6x-6x=10 | | 2/3y+-6=2 | | 3g^2-13g=10 | | x/3+14=27 | | 12x*4=104 | | 3c+12-c=20 | | 1x-21=70 | | 20=j/6 | | -9x-34=-15+68 | | (x10=x4) | | 10x+6+13x-2+8x-1+109=360 | | (10x+1)°=180 | | x/9+7=13 | | -2(4-3x)-6x=10+0 | | x/5-6=12 | | 15x-18=17x+6 | | 13-28x=54 | | (6x-5)+(x+8+2x+3)=180 |